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The level set method was originally designed for problems dealing with codimen-
sion one objects, where it has been extremely succesful, especially when topological
changes in the interface, i.e., merging and breaking, occur. Attempts have been made
to modify it to handle objects of higher codimension, such as vortex filaments, while
preserving the merging and breaking property. We present numerical simulations of
a level set based method for moving curvesRif) the model problem for higher
codimension, that allows for topological changes. A vector valued level set function
is used with the zero level set representing the curve. Our results show that this
method can handle many types of curves moving under all types of geometrically
based flows while automatically enforcing merging and breakirgpoo1 Academic Press

1. INTRODUCTION

Moving higher codimensional objects is of interest in many areas of mathematics and
physical world. We consider here the model problem of moving a cuié,ia codimension
two object, according to geometric quantities of the curve. This type of motion is called g
metrically based motion and, simply put, is the motion of a curve based on its configurati
Curves inR3 themselves, under a geometrically based motion, can be used to model vari
phenomenain the physical world. Vortex filaments, such as smoke rings, can be represe
in this way, as can the vortex lines in superfluid helium [10]. Such flows of curves have a
been used for active contours in image processing [11]. In pure mathematics, curve shol
ing, the motion of a curve by its curvature, has been and is continuing to be studied [2]
motion in the binormal direction has a link to the Safliriger equation. Finally, extension
of the level set method as a tool to handle objects of higher codimension is of great inter
A list of further problems dealing with codimension two objects can be found in [8].
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FIG. 1. The picture on the left shows two lines, one on top of the other. The picture on the right shows ¢
merging requirement in action when the two lines touch. Note the curve reconnects according to the acute ar

In addition, we are further interested in cases of motions of curves that exhibit topologi
changes, i.e., merging and breaking. For curveR3anthis concept is simple and readily
observed in two phase flow [17]. For curvesRA, merging and breaking should behave
as in the case of smoke rings. This follows curve shortening principles as in the Ginzbu
Landau model (see [4, 9, 15]), meaning when two segments of the curve touch, the ci
breaks and reconnects in the acute angle directions (see Fig. 1). Pictures of merging
breaking can also be found in [10] and [15].

Attempts to extend the level set method for use on curvé®®ihave been studied by
De Giorgi [6] and Ambrosio and Soner [3]. They were interested in the theoretical aspe
of curvature motion but also outlined algorithms to capture the flow. In the algorithms
single level set function, usually the squared distance to the curve, was used to repre
curves inR3. This was done in the standard level set way, with the curve being represen
by the zero level set of the level set function. Note in this formulation, the zero level se
also the set of points achieving the minimum value. One problem, numerically, with tt
method is in accurately determining the location of the curve. The main problem, howe
for the topic we consider here is that in simulations, we see the handling of topologi
changes does not carry over. A phenomenon called “thickening” occurs, where the :
level set develops a honempty interior, when curves try to merge (see Fig. 2 and [5]).
formulation, however, was successful in the theoretical study of curvature flow.

The study of curves ilR® has also been attempted from other directions, for exampl
using front tracking [7]. This is where the curve is parametrized and numerically represer
by discrete points, each of which is then evolved under the flow. Recording the positi
of these points along with interpolation thus gives the curve at all time. The main probls
with this approach lies in finding and enforcing merging or breaking when it occurs. Tt
has proven to be difficult for curves R? and is equally difficult, if not more so, for curves
in R3. On the other hand, another approach, diffusion generated motion by Ruath
[15], can correctly deal with topological changes but so far is limited to curvature flow. Tl
results for curvature flow, however, are good, and we have compared them with our res
whenever possible.

2. LEVEL SET REPRESENTATION OF THE CURVE

The representation we adopt makes use of two level set functions to model a curv
R3, an approach Ambrosio and Soner [3] suggested first but did not pursue because
theoretical aspects were too difficult. In this formulation, a curve is represented by
intersection between the zero level sets of two level set functipra)d v, i.e., where
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FIG. 2. These pictures were generated using De Giorgi's method. The picture on the left shows two heli
about to touch. The picture on the right shows thickening occurring when they do touch. The merging requiren
is not satisfied here.

¢ = ¥ = 0. Here,¢ andy can be considered as the two components of a vector valug
level set function whose zeros give the curveRA Thus, we can consider objects of
arbitrary codimension by using a vector valued level set function with the correct numt
of components. For example, the zeros ohanomponent vector valued function ovet R
can be used to represent a codimensionbject in dimensiom. Note, the set of points
satisfying¢ = C; andy = C,, whereC; andC, are constants, are also curvesRA.
Finally, as is standard in level set methods, we regulaizg and| V| to avoid division

by zero at degeneracies.

Under this representation, moving a curve by a certain type of motion is accomplist
by evolving the functiong andy in R3, keeping in mind that the intersection of their zero
level sets gives the curve. Usually, the curves gotten from the intersections of other le
sets ofp andy will move under the same type of motion. This, of course, is not neede
The only requirement for movement of the other curves is not to interfere with the desil
curve.

2.1. Geometric Quantities

In order to move a curve by a geometrically based motion, we need to be able to de
all relevant geometric quantities of the curve in terms of our representation, i.e., in ter
of ¢ andy . Important quantities include tangent vectors, curvature times normal vecto
normal vectors, binormal vectors, and torsion times normal vectors.

To find the tangent vectorB, we notice thaVys x V¢, taken on the curve, is tangent to
the curve. So the tangent vectors are just a normalization of this,

VY x Ve
VY x Vg’

Note if we replacep with —¢, the direction of the tangent vectors will be reversed.
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For the curvature times normatN, of the curve, we use the definition that it is the
change in the tangent vector along the curve,

dT
N=—.
o ds

Using directional derivatives, this becomes

VT, - T
kN=VT.T=| VT -T|,
VT - T

whereT;, Ty, andTs are the components df. We may then use the expression forto
write this in terms ofp andy.

For the normal vectors\, of the curve, we use the definition that it is the normalizatior
of kN,

_ «N
kN[

The binormal vectors B are then obtained using the definition
B=TxN.

Note the direction of the binormal vectors are reversed if we reglame—¢. Finally, the
torsion times normal vectors can be derived using the definition

tN=-VB-T.

All these geometric quantities can be written in termgaind+ by using the corre-
sponding expression fdr. Also, note the above geometric quantities derived at an arbitra
point in R® are quantities for the curvg = C1, ¥ = C,} that passes through that point.
For more on the definitions of the geometric quantities introduced above, see [2].

3. THE EVOLUTION EQUATION

Moving the curve irR® using our representation requires moving the level set functior
¢ andy,. We will first investigate the motion of a curve under a given vector fieildl R3.
From standard level set ideas, we know that the partial differential equation

$t+v-Vop =0
moves the level sets @f according tow. Similarly,
Yi+v-Vip =0

moves the level sets af according tov. Therefore, the system of partial differential
equations,

$pt+v-Vp=0
Yit+v-Vy =0,
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moves the intersections of the level setg@ndy, especially the zero level sets, according
to v. This can be derived in a more precise fashion.

Let y(s,t) denote the intersection between two level set surfaceg ahd . So
¢(y(s,t),t) = Cyandy (y (s, t),t) = Co. Taking a derivative with respect taives

Voy(s,0), 1) - n(s, D) +¢i(y(s, 1), 1) =0
Vy(y(s, 0.0 - n@s )+ vy 1),1) =0.

Since the curve is moving under the vector fieJdhis means (s, t) = v. Therefore, since
C; andC, are arbitrary, we get back the system of equations above, valid in &fi.of

3.1. More General Motions

By allowing v depend o andy and their derivatives, we can write down the evolution
equations for any type of motion. For example, setting« N in the evolution equations
above gives curvature motion in the normal direction. Similarks N gives motion in the
normal direction at unit speed,= B gives motion in the binormal direction at unit speed,
v = tN gives torsion motion in the normal direction, afidx x N gives a motion related
to that of vortex lines in superfluid helium. We now study some of these motions mc
carefully and present numerical discretizations and results.

4. CURVATURE MOTION

The evolution equations for curvature motion take the form

¢ +KkN -V =0
Yt +kN-Vy =0,

wherex N is as defined above in all 2. This, in fact, can also be derived from modified
gradient descent minimizing the length of the curve. For codimension one and the stant
level set method, this means the introduction of the t&rgh|, which still preserves energy
minimization (see, e.g., [12]). Notice first that the length of the curve represented by 1
intersection of the zero level sets@fndy can be written as

L(g.¥) = /RS5(¢)5(W)IPWV¢IIVWI dx,

where$ is the one-dimensional delta function angdi® the orthogonal projection matrix
that projects vectors onto the plane with normal veeotor

p=1 2%
[v|?

In R3, we havel P,w| = 2% and so we can also write the length as

[v]

L. ¥) = /st(as)a(ww X V| dx.
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PropPOSITIONL. The Euler-Lagrange equations for this energy are

0= _v. [ PwVe ¢ )3 8
(|P1,,V¢|| ¥l | 8(¥)d(¢)

Pys Vi )
0=-V. \Y 8(P)S(Y).
(|P ¢V1/f|| ¢l ) 3(P)8(¥)

Proof. See Appendix.

This can be rewritten as

Py, Vo
(0)=<5(¢>5<w> ° ) - (Ravivv)

0 0 26»w)) | Ly (Eerivg)

Following standard level set practice [19], we try to replace the matrix of delta functior
viewed as smoothed out delta functions, with a positive definite matrix that will give, «
the right-hand side of the Euler—Lagrange equations,

kN - V¢
kN-Vy ) -
Then modified gradient descent minimizing the length of the curve will be equivalent

curvature motion. For this, we have

ProPOSITION2. The replacement matrix that gives equivalence is the symmetric posit
definite matrix given by

[Vl V¢ -V
|Pyy V| [Pyy Vo[ VY|
V¢V VY]

[Pop VY|V [Poy Vol

Proof. See Appendix.

Note because this replacement matrix is symmetric positive definite, the length is still
ing minimized, i.e.t% L(¢, ) < 0. This means curvature motion, under our representatio
follows a curve shortening process.

4.1. Numerical Considerations

For all our numerical discretizations, we will lay down a uniform grid deéand use fi-
nite difference schemes. Finite differencing simplifies high-order numerical discretizatic
of the partial differntial equations, and the uniform grid simplifies finite difference scher
construction and implementation. We thus discretize the curvature evolution equation, wi
is parabolic, by using second-order central differencing on all spatial derivatives (see,
[19]). The caseT = 0 is regularized to remove singularities in the curvature expressio
This is usually accomplished by introducing small positive constants into the denominat
to prevent them from becoming zero, a standard level set practice (see [12]). The result
get using this particular regularization seems to agree with the curve shortening resul
[15]. For the time discretization, we use Total Variation Diminishing Runge—Kutta (TVLC
RK) of third order (see [16]). The associated Courant—Friedrichs—Lewy (CFL) conditi
says that the time stefit needs to be less than a constant time€, whereAx denotes
the spatial step size. In our simulations, we usually take the constant to be 0.5.
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TABLE |
Order of Accuracy Analysis for a Double Helix Moving under Curvature Flow

Grid size Error Order
32x32x 32 0.00459276
64 x 64 x 64 0.00140586 1.7079
128x 128 x 128 0.000356941 1.9777

Note Results show the method is second order accurate under the maximum norm.

This representation allows topological changes to occur, as shown by our numer
simulations. The time of merging or breaking does not have to be computed and there i
need for switches to enforce the topological changes. All of this is automatically hand|
by the representation. The evolution equation is simply solved until the desired time ¢
the resultingy andy gives the curve, even when merging or breaking has taken pla
previously. Also, the curve location does not have to be computed until the curve is to
plotted.

Plotting itselfis carried out by using interpolation schemes. Each cube in the grid is bro}
up into six tetrahedra, inside of whighandy, can be approximated by hyperplanes. The
intersection of the zero level sets of the two hyperplanes can then be computed, givir
small segment of line inside each tetrahedron. The union of all these segments give
approximation of the curve. Higher order interpolation schemes can also be used witt
adversely affecting the speed of the algorithm since curve location is only needed at the
of the run.

Numerical simulations show that the method is second-order accurate. One such res
shown in Table I. This test compared the numerical evolution of a double heR% with
the exact solution, as detailed in [15]. The errors computed are in the maximum norm.

We consider the motion of a single helix in Fig. 3. The helix straightens out, as it shou
as time progresses. Evolution of two slightly translated helices is presented in Fig. 4. -
helices move independently of each other, each one straightening itself out, until they to
Merging then occurs, with the resulting curves continuing to flow by curvature and shrir
Another example with two helices is shown in Fig. 5. The two strands again touch, &
merging and breaking occurs. The resulting curve then continues to flow by curvature
Fig. 6, we consider the motion of linked rings. At first, each ring will shrink its radibog
a speed oﬁ. Eventually the rings touch, and merging and breaking occurs. The resulti
curve then continues flowing by curvature. This result can be compared to that in [1
Initialization for the level set functions for these rings is derived by the same strategy
in [15]. Finally, Fig. 7 and 8 show the evolution of other curves. The zero level sets of t
initial level set functions of Fig. 8 are a cube and an ellipsoid. From these examples, we
that our method can handle curvature motion, even in the presence of merging and brez
of the curve.

5. NORMAL AND BINORMAL MOTION

The evolution equation for motion in the normal direction at unit speed is

o +N-Vp=0
i+ N-Vy =0.
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FIG. 3. This shows a single helix evolving under curvature motion. The curve remains helical in form but t
radius about the center axis shrinks, straightening out the curve.

We discretize the time derivative using third-order TVD-RK and all spatial derivatives usi
second-order central differencing. Singularities occurrifd@ = 0 andjx N| = 0 are reg-
ularized. Note geometricallyy is not defined wheic N| = 0. Also the use here of central
differencing in space is for convenience. High-order schemes, such as ENO and WE
schemes, can be used in general by viewing the evolution equations as transport equa
We consider a potato chip shaped curve as our initial curve in Fig. 9. Normal moti
in our simulations causes a sharp kink to develop in the curve after a certain time. Thi

1 / 1
0 0
-1 —}
1 ; ;
0 0 0 0

-1 -1 -1
1 1
0 (é 0 q
-1 ~ -1
! 1 ! 1
0 0 0 0
-1 -1 -1 -1

FIG. 4. This shows two slightly translated helices evolving under curvature motion. The translation allo
the helices to eventually touch and merge. The resulting curve then continues to evolve under curvature m
and shrink.
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FIG. 5. This is another picture of two helices evolving under curvature motion. The two touch and merge
a certain time. The resulting curve then continues to evolve under curvature motion.

because parts of the curve have rammed together and merging is enforced. In a star
tracking algorithm that allows curves to pass through each other, a swallow tail wot

appear instead. The zero level sets of the level set functions for the initial curve are a sp
and an ellipsoid.

0 0
g g
1
0 0
-1 -1
1 1
0 g 0
-1 -1
! 1 1 1
0 0 0 0
-1 - -1 -1

FIG. 6. This shows two linked rings evolving under curvature motion. The two rings shrink indeper

dent of each other until they touch and merge. The resulting curve then continues to evolve under curve
motion.
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FIG. 7. This shows two complicated curves evolving under curvature motion. The simulation stops befi
the curves touch.

The evolution equation for motion in the binormal direction at unit speed is

¢t +B-Vop=0
Ye+B-Vy =0.

Once again, we discretize the time derivative using third-order TVD-RK and all the spat
derivatives using second-order central differencing. The singularities occurrifig)at0

FIG. 8. This shows a curve with kinks evolving under curvature motion. The kink is smoothed out almc
immediately and then shrinks to a circle.
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FIG. 9. This shows the time evolution of a curve under constant flow in the normal direction. The curve
initially shaped like the boundary of a potato chip and shrinks thereafter. Note a kink forms in the curve at a cer
time, an indication of merging.

and|xkN| = 0 are regularized. Note ENO and WENO schemes can also be used here
the spatial discretization.

We consider the simple case of a circle moving under binormal motion in Fig. 10. T!
circle is translated, which is the correct solution. In Fig. 11, we look at the evolution of tw
helices. Both slightly rotate in opposite directions.

The cases of normal and binormal motion are not as nice as the case of curvature mc
and not all initial curves evolve nicely. More work needs to be done on the discretizati
of the equations, especially the regularization of singularities. Flows we have not stud
here include motion by torsion times normal and motion under the velocityTietdc N.
The latter motion is related to vortex lines moving in superfluid helium.

5.1. Combinations

We can combine the motions we have studied above to form other types of motions.
example, taking the velocity field= N + ex N gives motion in the normal direction with
some curvature flow.

We look at the evolution of the potato chip shaped curve in Fig. 12. Thedésrtaken
to be 0.1 and the result does not have a sharp kink anymore because of regularizatio
the curvature term.

6. REMARKS

Some remaining difficulties include theoretical justification, which we will not investigat
here; creating an optimal local method; and initializingndvr to create a given curve.
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FIG. 10. This shows the time evolution of a circle under constant flow in the binormal direction. Since tl
original curve lies on a plane, the evolution is simply translation in the normal direction of the plane. In this pictu
the circle moves in the downward direction.

6.1. Local Level Set Method

We would like to solve our evolution equations only in a small neighborhood of the cur
instead of over all oR3. This would give optimal efficiency in both speed and memory
usage. Solving in all oR®, however, is sometimes needed, for example, when the curv
coming from the intersections of other level setspodnd s play a role. It can also be
adequate, for example, if the problem we are considering requires other equations t
solved in all ofR3. But for the type of problems we have discussed here, a more loc
method is needed. Such an algorithm for curveR%ror surfaces irR® has been created
[14] (see also [1]) but a few things need to be added when considering curiés Tine
main idea involves only doing computations in a tube around the curve with radius a cons
timesAX. Reinitialization needs to be performed occasionally to keep errors at the bound
of the tube from influencing the curve. For curvesiif this is accomplished by replacing
the level set function with the signed distance function to the curve at each time step. Tl
at each grid point, the level set function is given a value depending only on its zero le
and not the other level sets.

Our first step in optimizing our algorithm is to cut down one of the dimensions &
localizing around the zero level set of one of the level set functionsysayhe motion
of ¥ will exactly follow the procedure stated in [14] to achieve localization. The motio
of ¢ will also follow some of the same techniques. Instead of the standard signed dista
reinitialization,¢ can be reinitialized by first solving

ér 4 sign@) (|Pyy Vo — 1) =0
ot =0) =9,
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FIG. 11. This shows the time evolution of two helices under constant flow in the binormal direction. Eac
helix rotates about its center axis but in opposite directions.
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FIG. 12. This shows the time evolution of an initial potato chip shaped curve by unit speed in the norn
direction combined with 0.1 times curvature. Note a kink no longer forms because of adding the curvature te
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to its steady state solutiofh,,, and then solving

G + signe) Y. vé =0
SNy Ve T
Pt =0) = po

to its steady state solution, finally replaciandy this function. This can be done every few
time steps. The first equation makgsnto signed distance away from its zero level set,
with distance measured on the level set surfaces.dthe second equation makes the level
set surfaces ap perpendicular to the zero level set surface/ofBoth do not change the
location of the intersection of the zero level sets but makes the other level sets well behe
during the flow. All this together allows us to treat the problem like a two-dimensional or
centered about the zero level setjgfthus effectively reducing both the speed and memor
usage of the algorithm.

A completely localized, and thus optimal, algorithm for curveRInhowever, has not yet
been completed. Certain problems may arise from such an algorithm; for example, a t
of the level set functions about the curve may introduce spurious curves during topolog
changes. These kinds of abonormalities do not ocapiaifidys are globally defined. Also,
the reinitialization process in standard local level set methods needs to be further stu
and adapted.

6.2. Initialization

Another issue is how to choose the initial level set functions to create a desired cul
In some occasions, the initial functions are given, for example, as Clebsch variables |
[18]). Usually, however, they need to be constructed by hand. The difficulty in this lies
forming the functionsp and v in all of R3. Forming these functions local to the curve
is very easy but sometimes these local constructions cannot be extengéddausing
problems during topological changes. However, as Fig. 6 shows, creating initial level
functions for complicated curves is not impossible. Another problem that may arise is t
some constructions may hamper merging for certain motions. This also needs to be stu
further.

7. CONCLUSION

We have analyzed a level set based method for representing and moving higher c
mensional objects, especially curvesRA. As numerical results show, the representatior
automatically handles mergings and breakings of the curve. Evolution equations on the |
set functions can then be used to move the curve under a variety of geometrically be
flows. An underlying uniform grid allows for easy high-order finite difference scheme co
structions. All this sets up a foundation to deal with higher codimensional objects, especi
when merging and breaking can occur.

8. PROOFS OF PROPOSITIONS

These “proofs” are really only formal derivations. For example, we have not defined
precise spaces of functions we are using. Nevertheless, we present them as a formal
to why the method seems to work well.
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Proof of Proposition 1. We will derive the Euler—Lagrange equations for the energy
L(¢,w)=/ |Pyy VoIV 18(9)s(y) dX,
Rl‘l

where¢ andy are real valued functions ov&".
Note

|Pyy VoI2IVY |2 = [VoI2IVY|2 — (V- Vi) = | Py V2|V 4,

and, therefore,

IPoy VolIVY| = VIVPRIVY2 — (Vo - V)2 = [Py V|| V.

So,

(IPyy+svu (Vo + SVD[IVY + SVv[8(¢ + sn)d (¢ + sv))
s=0
d

ds

d
ds

(I1Pyy (Vo +sV)||V|8(¢ + sn)d(¥))
0

s=|

* ds

(I1Pyy+svu VOIIVY +SVVI[8(9)8 (Y + sv))
s=0

(I1Pyy (Vo +sV)||V|8(¢ + sn)d(¥))
0

ds

s=|

+ (IPyy (VY +SVV)[IVPIS (Y + s1)8(¢)).

s=0

ds

Therefore,

ds |Pyy (Vo +sV)[[V|8(¢ + sn)d(¥) dx

d
L@ +sn, ¢ +sv) = —
SS:O R"

s=0 d

* 4s |Pyy (VY + SVV)[|VP|3(¥ + sv)é(¢) dx.
S|s_g Jrn

We now state and use

LEMMA 1. The Euler—Lagrange equation of the energy

E@®) = /Rg3(¢)3(1/f)IPWV¢IIV1/f|dX,

0= _v. < Py, Vo

\% S(Y)é(e).
IPwV¢|| I/fl) ¥)s(#)
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So, using this and its version with replaced byy, we get that the Euler-Lagrange
equations are

Py, Vo )
0=-V. v s(¥)o
(|PWV¢|| vl | 8(¥)é(e)

Py, V
0= _v. ( vo VY
[Pyg V|

|V¢|> 5(P)8(¥).

Proof of Lemma 1. We will prove the more general statement that the Euler—Lagrang
equation of the energy

Pyy Vo )
E = ) ) \Y Vol dx.
@) /Rsﬂ<|PW,V¢| W)S(@)IVY x Vol dx

0=—V - (Pyy VB(Pyy VO)IVY DS (¥)S(9),

whereg is a real valued homogeneous of degree one functionR¥eNote 8(p) = |p|,
p € R3, then finishes the proof.
We have, sincg is a homogeneous of degree one function,

Py, V
E(¢) =/ ,3( vy Vo >|vaV¢||V1//|5(1ﬂ)5(¢)dX=/ B(Pyy V§)s() |V |(¥)dx.
R \|Pvy Vo] RS

So,

ds

E(p +sn) = /Rs(Dﬂ(PVW"’) - Poy VIS (@) |V [8(w) dx

s=0

+/R3ﬁ(PwV¢)5'(¢)IVWI5(¢)UdX
=1+,

wherel is the first integral on the right-hand side ahds the second. Now,

Vi - Vn
| =/ (Dﬂ(PV./,V¢>)~ (vn— a w))wnww(w)dx
- Vvl

== /R3 V- (DIB(Pv¢V¢)5(¢)|V¢|5(I/I))ndX
)
+/ v ((Dﬁ(PV‘/’V‘b) ' VW)VW(S(‘P)(W) ndx
R V]
- /R V - (DB(Pyy V)|V |8(¥))8(¢)ndx
- /Rs(Dﬂ(PWV‘ﬁ) - V$)8 () |V 18(y)n dx

)
+/ v. ((Dﬁ(PvM) - wf)wﬂ) 5()n dx
. Vvl
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S)
DB(Pyy V) - Vi) (VY - V)’

+ [ DBy VUV V) 6 nd

—— [ v (DBPesvoIv IS

W)
— (DB(Pyy Vo) - VW)VIPW) s(¢)ndx

—/RS ((PB(Pey V) - V) V|

Vy - Vo
VY|

T /R3 V- (Pyy DB(Pyy V) IV 18(4))8(p)n dx

— (DB(Pyy V@) - V) ) 8" ()8 (Y)ndx
_/Rs(PWW' DB(Pyy V$)8' (9) V|8 (¥)n dx.
Note,

V- (Pyy DB(Pyy Vo)V [8(¥)) =V - (Pyy DB(Poy V@) IVY DY),

Sincerw D,B(PV]/,V(ﬁ) -V = 0.
Also, for p € R3, we have

B +e)p) =1+ €)B(p).

Thus, using a suggestion by an anonymous referee, we take a derivative with regpect
on both sides and evaluatecat= 0. This leads to the equality,

p-DB(p) = B(P).
Note especially thap = Py, V¢ gives
Pyy V@ - DB(Pyy V@) = B(Pyy V).

So altogether, we get

d
ds E(p+sn) = —/R V- (Pyy DB(Pyy V@) |IVY ()3 (d)n dX,
s=0 n

and sodis\s:0 E(¢ + sn) = 0 for arbitraryn leads to the Euler—Lagrange equation
=V - (Pyy DB(Pyy V@) IVY NS (¥)3(¢) = 0.

Proof of Proposition 2. We will show that we can gatN - V¢ and«N - Vi from re-
placing the matrix of delta functions in the right-hand side of the Euler—Lagrange equatio
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We first state the following,

Py, Vo |Pyy Vol
LEMMA 2. PgykN-V¢p =-V. (\Pviv¢\ |V¢|> vyl -

We see from this that

NPy Vg = V. (anw) oy 9l

Poy Vol VY
Pys Vi ) |Pyy V|
N PegVy <|PV¢W|" ) Vel

So we want to look for functiong andg that may depend oa, v, and their derivatives

such that
f]_ 01 KN~PV11/V¢ KN~V¢
@ kN - Pyg Vi ~ \ kN VY )

This is equivalent to

kN - (f1Pyy Vo + 01Pys V) = kN - Vo
kN - (092Pyy V@ 4+ f2Pyy V) = kN - V.

Therefore, we are looking for a decompositiorMap in terms ofPy,, V¢ and Py, Vi and
similarly for V. First note that this is possible since

V¢ X Pv¢V1/f = V¢ X Vlﬁ = vaV(ﬁ X Vlﬂ,

so we have thaV¢, Vi, Py, V¢, Pys Vi all lie on the same plane. AlsBy, V¢ and
Py, Vi span the plane if we disregard the degenerate case Wigeamd Vs are parallel.
Taking a dot product oV ¢ with the equations

V¢ = f1Pyy Vo + 01 Pyy VY
Vi = QPyy Vo + f2Pyy Vi,

gives

= |Ve|?
|Pgy Vo|?
Vo - Vyr

%= 1Py, Vo

Also, taking a dot product 0¥ y» with the same equations gives

vy
[Py V|2
V¢ Vy
[Py V2

2

01

Note thatf, = f,.
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Therefore, replacing

(5(¢)3(W) 0 )
0 3(P)sy) )’

in the Euler—Lagrange equations by

|Pyy V| |Pyy VY|
o9 G vy

IPoy Vol ¢ IPsVYl
R vy fow

will give the curvature flow evolution equation. So the replacement matrix can be writt:
as

[Vl V¢ -Vy
[Pyg V| [Pyy VoI VY|
V¢-Vi [Vl

[Poy VY|V [Poy Vol

In standard level set prctice in general, this replacement can be used, unchanged, fc
other Euler-Lagrange equations of curve flowrih
Note the determinant of our replacement matrix is

V|2 V|2 — (Vg - V)2
|Poy VoI2IVy 2

which is equal to 1. Also, the first entry is positive and the matrix is symmetric, so it
symmetric positive definite.

Proof of Lemma 2. The main property we will show is
V- (TxVy)=«N- (V¢ xT),

where
_ VY xVe
VY x Vol
Using this to expand the right-hand side of the evolution equation in the second mett
we get
—Pv¢KN . V¢ = —va,V(f) -kN
— _xN.- (IVW|2V¢> - (Vo - Vlﬁ)vxﬁ)

V|2
((Vlﬂ x V@) x V1/;>
= _KN .
V|2
_ N ((VW x V@) x VW) [V x V|
VY x V@i V|2
N vy T VT

IV |2
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_ VY x V|

=V (T x VST

. ((wf x V) x w) VY x V|
VY x V| vylz

which finishes the proof.
The proof of the main property we used is as follows. &gk, e3 be orthonormal. Then

V- X = (eX), &) + (e(X), &) + (e3(X), &3),

whereey(f1, f2, f3) = (e1(f1), ex(f2), e3(f3)). This is since foré, &, & orthonormal,

3 3
<Zeﬁej(x), ZaikeK>

j=1 k=1
3

Za‘ak (€5 (X), &)

k=1

e 1

ik (€ (X), &)

P
Il
[iN

- T 2N 2

(€j(X), &).

Il
iR

Therefore, ifé; = (1,0,0),& = (0,1, 0), & = (0,0, 1), we get

3 3

D B0, 8) =V -X =1 (ej(X),e).

i=1 =1

Now, lete; = ‘%igg‘ e = |2§%|’ e; = g x &. Noteey, &, e; is orthonormal, and the

guantity we wish to investigate I - (e; x V). Now

V(e x V) = (ew(er x Vi), &) + (&(€1 x V), &) + (e3(€1 X V), €3).

But

el(er x V) = ey(ey) x Vi e x (en(Vy)),

SO

(er(er x Vi), &) = (er(e) x Vi, &)
= (kN x Vi, ep)
= detlk N, Vy, e1)
=«kN - (Vy x ).
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Also,

(€281 x V), &) = (€2(€1) X VY, &) + (€1 x (&(VY)), &).

Now ey is a unit vector field impliesy(e1) L e1, which meang,(e;) is a linear combination
of Vi ande,. Therefore,

(€2(81) X VY, &) =0,
and so
(€281 X VY1), &) = (&1 X (&(VY)), &).
Finally,
(e3(€1 x V), €3) = (€3(€1) X VY, €3) + (€1 X (€3)(V¥)), €3).

Now e; is a unit vector field which impliegs(e;) L e;. This meanss(ey) is a linear
combination ofVy, ande;,. Since

(&2 x VY, €3) = — (& x €3, V) = —(e1, Vy/) =0,
therefore,

(e3(1 x V), €3) = (€1 x (e3(VY)), &3).

So altogether, we have

V(@ x Vi) =«N-(V§ x e) + (e x (&(VY)), &) + (& x (e3(VY)), &3).

But
(&1 X (e2(VY)), &) = — (€1 X &2, &(VY))
= —(e3, (VY)),
and
(&1 x (e3(VYr)), €3) = (€3 X €1, &3(VY))
= (&, &3(VY)).
Now
3 3 azw 3 3 82'(#
(€. 83(VY)) = ;;ab, X ;,;b P (€3, &(VY))
Therefore,

V(@ xVy) =«N-(V§ x &),

which is what we want.
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